
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 4, APRIL 1997 557

of the square coaxial line(a = b; s = t; t1 = t2 = 0) as the number
of basis functionsN1 = N2 is increased. In the last line of Table I
the exact values for the square coaxial line are listed as quoted from
[2]. One may observe that the values ofZ0 tend to increase with
an increasing number of basis functions, such that asN1 ! 1 the
value ofZ0 as computed here increases monotonically toward the
exact value.

For the case of the rectangular coaxial line, computed withN1 =
N2 = 20, the authors’ results coincide with those from [5]. Fig. 2
shows the characteristic impedance as a function of the height of
the inner conductort, with various other parameters. These figures
can be used for design purposes when transitions between ridged
waveguides and coaxial lines are needed.
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Propagation Characteristics of a Dielectric-Coated
Coaxial Helical Waveguide in a Lossy Medium

Takahiro Iyama and Jun-ichi Takada

Abstract—In this paper, the authors discuss the propagation character-
istics of a dielectric-coated coaxial helical waveguide in a lossy medium.
The authors place emphases on the phase constant, propagation modes,
magnetic fields distribution, and attenuation constant. When permittivity
of the internal region is relatively small, two propagation modes exist
and dominant components of their magnetic fields are different. Lastly,
the authors discuss the relation between the attenuation constant and
permittivities.

Index Terms—Absorbing media, helical waveguide, hyperthermia.

I. INTRODUCTION

Coaxial helical waveguides have been studied by Hill and Wait
[1], Wait [2], Mirotznik et al. [3], and other researchers. In those
papers, the bared or noncoated helices were discussed. In this paper,
the authors discuss the theoretical propagation characteristics of a
dielectric-coated coaxial helical waveguide in a lossy medium. This
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Fig. 1. Perspective view of a dielectric-coated coaxial helical waveguide
constructed of three layers.

structure corresponds to the coaxial helical applicator for microwave
hyperthermia which is covered with a catheter.

II. FORMULATION

The analysis model is shown in Fig. 1. The inner conductor of
radiusa is perfectly conducting, and the helical wire is wound at
� = b with pitch angle . The model is divided into three regions as:

a < � < b: region1 (permittivity "1)

b < � < c: region2 (permittivity "2)

c < �: region3 (permittivity "3):

The permeability�0 is constant for all regions. The authors assume
that the variations of the electric and magnetic fields in thez-direction
is exp (�
 � z) and those in the�-direction is constant;
 is the
complex propagation constant along thez-direction. At � = b, the
boundary conditions are represented by the sheath helix model, i.e.,
the cylindrical surface at� = b is assumed to have anisotropic
conductivity that the surface current can flow along only the -
direction. With those assumptions, the authors obtain the following
Maxwell’s equations in the cylindrical coordinates:
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where! is the angular frequency. The appropriate solutions in region
1 and 2 are
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Fig. 2. Propagation constant of fast wave mode:f = 430 MHz, a = 0:185

mm, b = 0:6 mm, c = 0:8 mm, "r1 = 2, "r2 = 2, and"r3 = 53� j59.

Fig. 3. Propagation constant of slow wave mode:f = 430 MHz, a = 0:185

mm, b = 0:6 mm, c = 0:8 mm, "r1 = 2,"r2 = 2, and"r3 = 53� j59.

and in region 3
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where�i = �(!2"i�0 + 
2) (i = 1; 2; 3). The boundary condi-
tions at � = a are

Ez(a) = E�(a) = 0 (13)

and at� = b are

Hz(b�0) =Hz(b+0) + j� (14)

E�(b�0) =E�(b+0) (15)

Ez(b�0) =Ez(b+0) (16)

H�(b�0) =H�(b+0)� jz (17)

El(b�0) =E�(b�0) cos +Ez(b�0) sin = 0 (18)

where the current on the sheath helix isIt = 2�bjz= sin =

2�bj�= cos , and at� = c

Ez(c�0) = Ez(c+0) (19)

H�(c�0) = H�(c+0) (20)

Hz(c�0) = Hz(c+0) (21)

E�(c�0) = E�(c+0): (22)

To satisfy all the boundary conditions, the following eigenvalue
equation for
 is derived:
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Fig. 4. Magnetic field’s distribution of fast and slow wave modes:a = 0:185

mm, b = 0:6 mm, c = 0:8 mm, "r1 = 2; "r2 = 2, "r3 = 53� j59, and
pitch angle = 45

�.

Fig. 5. Propagation constant of fast wave mode:f = 430 MHz, a = 0:185

mm, b = 0:6 mm, c = 0:8 mm, "r1 = 50, "r2 = 2, and"r3 = 53� j59.

Definitions ofA andP are given in the Appendix. The solution of
the equation (the eigenvalue) is the propagation constant
. In general

 is complex; the real part of
 is the attenuation constant� and the
imaginary part is the phase constant�. Equation (23) is solved by
the secant method. The validity of (23) for"r2 = "r3 is confirmed
by comparison with the results shown in [3].

III. N UMERICAL RESULTS

Figs. 2 and 3 show the attenuation constant� and the phase
constant� as functions of the pitch angle , for "r1 = 2, "r2 = 2, and
"r3 = 53�j59. For this structure, two independent eigenvalues exist.
Fig. 4 shows the magnetic field’s distribution of both modes in the
�-direction. In the internal region,H� is dominant for the fast wave
mode, andHz is dominant for the slow wave mode. The asymptotic
values to ! 90� correspond to one for the internal coaxial guide
(region 1) and one for the external Goubau waveguide (regions 2
and 3, respectively). If this coaxial helical waveguide is fed by the
ordinary coaxial waveguide, fast wave mode is dominantly excited.

Fig. 5 shows the attenuation and phase constants when"r1 = 50.
In this case, only one eigenvalue exists and the asymptotic value is
one for the coaxial waveguide (region 1).

Fig. 6 shows the propagation constant as a function of"r1 for fixed
 . When the phase constant of the coaxial guide (region 1) is nearly
equal to that of the Goubau guide (regions 2 and 3, respectively),
the attenuation constant is maximum. In this case, strong coupling
is expected.
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Fig. 6. Propagation constant as a function of the permittivity"r1: f = 430

MHz, a = 0:185 mm, b = 0:6 mm, c = 0:8 mm, "r2 = 2, "r3 = 53� j59,
and pitch angle = 45

�.

IV. CONCLUSION

The authors calculated the propagation constant of a dielectric-
coated coaxial helical waveguide in a lossy medium. In the case
where the internal permittivity"1 is small, two modes exist and are
related with the internal or external construction, respectively, and
wavelength reduction is remarkable in the external–dominant mode.
In the case where the internal permittivity"1 is large, the wavelength
reduction is dominated by the inner dielectric, and when the phase
constant of the coaxial guide (region 1) is nearly equal to that of the
Goubau guide (regions 2 and 3, respectively), the attenuation constant
becomes large. The calculation for the practical applicator with finite
length is left for future study.

APPENDIX
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